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Biochar: New purpose not a new material

Pyrolysis, carbonization, and coalification are well establish 

conversion processes with long research histories

Except:

Prior emphasis: 

Conversion of biomass to liquids (bio-oils) or 

gaseous fuels and/or fuel intermediates 

Solid byproduct (biochar) has long been 

considered a “undesirable side product” 
(Titirici et al., 2007)

Used as fuel  

(3000-4000 BC)

Cave Drawings

(>10,000 to 30,000 BC)

Water filtration

(2000 BC)

Charcoal production

(15th century)
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Pyrolysis, carbonization, and coalification are well establish 

conversion processes with long research histories

Except:

Prior emphasis: 

Conversion of biomass to liquids (bio-oils) or 

gaseous fuels and/or fuel intermediates 

Solid byproduct (biochar) has long been 

considered an “undesirable side product” 
(Titirici et al., 2007)

What is new

The use (or purpose) for the creation of 
charred biomass:

Atmospheric C sequestration

Dates to 1980‟s and early 2000‟s
(Goldberg 1985; Kuhlbusch and Crutzen, 1995; Lehmann, 2006)

Used as fuel  

(3000-4000 BC)

Cave Drawings

(>10,000 to 30,000 BC)

Water filtration

(2000 BC)

Climate Change Mitigation

(1980‟s)

Charcoal production

(15th century)

Biochar: New purpose not a new material



Biochar: Black Carbon Continuum

Thermo-chemical conversion products

Graphite
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Biochar – Spans across multiple divisions in the Black C Continuum

However, biochar is NOT a new division…

Adapted from Hedges et al., 2000; Elmquist et al., 2006
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Biochar: Soil Application

• The assumed target for biochar has been soil 
application

• Focus has been on “creating” Terra Preta soils

Observations of increased soil fertility and productivity.  

Postulated from „slash and burn‟ historic charcoal additions

• Biochar (BC) Hypothesized also involved in humic acid formation
(Haumaier and Zech, 1995)



However, on the other side:

• Wood distillation plants [1800-1950‟s]

• Wood pyrolysis – source of chemicals and energy prior 
to petroleum

• Some historic plants on US-EPA Superfund site list

• Other charcoal sites

• Not always productive

• Reduced seed germination

• Reduced plant growth

Biochar: Soil Application

(BEGLINGER AND LOCKE, 1957)



Applications date back to the beginning 
of modern science [1800‟s]:

Soil Application… Long History

(LeFroy, 1883)



Applications date back to the beginning 
of modern science [1800‟s]:

Soil Application… Long History

And even earlier…

Fire pits built on soil…

Ancient Egyptians - pyroligneous acid

(bio-oil)

-used for embalming



• Recent compilation of historical and 
recent biochar applications:

Soil Application… Long History

• 50% positive,

• 30% no effect, and

• 20% negative impacts on growth and/or yield 
(Spokas et al., 2011)

• However, should not be used as a basis for 

forecasting outcomes Publication bias
(Møller and Jennions, 2001)



Proposed Biochar Mechanisms

1. Alteration of soil physical-chemical properties

 pH, CEC, decreased bulk density, increased water 
holding capacity

2. Biochar provides improved microbial habitat

3. Sorption/desorption of soil GHG and nutrients

4. Indirect effects on mycorrhizae fungi through 
effects on other soil microbes

 Mycorrhization helper bacteria  produce 
furan/flavoids beneficial to germination of fungal 
spores

Warnock et al (2007) 



Biochar impacts on Soil Microbes & N Cycling

 70+ different biochars evaluated

 Various biomass parent materials

 Hardwood, softwood, corn stover, corn cob, 

macadamia nut, peanut shell, sawdust, algae, 

coconut shell, turkey manure, distillers grain,

chicken feathers, bamboo, coconut shell 

 Represents a cross-sectional sampling of 
available “biochars”

 C content 1  to 84   %

 N content 0.1 to 2.7  %

 Production Temperatures 350 to 850 oC

 Variety of pyrolysis processes

 Fast, slow, hydrothermal, gasification,

and microwave assisted pyrolysis.



Laboratory Biochar Incubations

Soil incubations:

Serum bottle (soil + biochar)

5 g soil mixed with 0.5 g biochar 

(10% w/w) [GHG production]

Field capacity and saturated 

Oxygen & soil sterilization effects

Mason Jar (soil + biochar/isolated)

Looking at impact of biochar 

without mixing with soil
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Biochar isolated or mixed with soil
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Ethylene Impacts

Soil Microbial Impacts

Induces fungal spore germination

Inhibits/reduces rates of nitrification/denitrification

Inhibits CH4 oxidation (methanotrophs)

Involved in the flooded soil feedback 

Both microbial and plant (adventitious root growth)
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Closer look 
at N-

cycling
(hardwood sawdust biochar)
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Putting the pieces together: Not quite a full picture yet…

Ammonium (NH4
+)

Nitrite (NO2
-)

Nitrogen Uptake (plants/microbes)

Nitric Oxide (NO)

Nitrogen Gas (N2)

Nitrous Oxide (N2O)

Nitrification

N2

Mineralization

Organic N

Nitrogen fixation
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Nitrate (NO3
-)

Denitrification

Increased 
amounts

Decreased 
amount

However – no consistent trends



Impact of Biochar Volatiles in Soils

• Sorbed BC volatiles could interfere with microbial signaling 
(communication): Releasing or sorb signaling compounds 

• Volatile organic compounds can interfere with microbial processes

• Terpenoids – interfere with nitrification [Amaral et al., 1998; White 1994]

• Furfural + derivatives – inhibits microbial fermentation & nitrification (Couallier et al., 

2006; Datta et al. 2001)

• Benzene, Esters – Also inhibit microbial reactions

• Still ongoing and developing research area in the plant/microbe research area

• Alterations in VOC content could be sensitive indicators of soil 
conditions (Leff and Fierer, 2008)



Conclusions

 Despite the long research history –
 No absolute “biochar” consistent trends 

 Highly variable material

– Production & post-production handling

 Different responses to biochar
 Function of soil ecosystem (microbial linkage) & position on black 

carbon continuum

 Importance of fully documenting methods of creation, 

handling, and properties 
 – Allow future elucidation of factors

 Several inter-related mechanisms

 Biochar does act as a carbon sequestration agent
 As long as biochar has low O:C ratio (Spokas, 2010)



Conclusions

Economics caused the shift from biomass to fossil fuels in the early 

1920‟s:  We at the cusp where environmental stewardship is 

returning the pendulum back to biomass as the source for human‟s 

energy, chemical and agronomic needs 

Research is needed to optimize both:

1. Advanced pyrolysis system development for 

energy and chemical production 

2. Subsequent utilization of biochar in a 

sustainable and environmentally responsible 

manner

"I have but one lamp by which my feet are guided, and that is the lamp of experience. 

I know of no way of judging the future but by the past."   (Patrick Henry, 1775)
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